Semi-implicit Integral Deferred Correction Constructed with Additive Runge-kutta Methods

نویسندگان

  • ANDREW CHRISTLIEB
  • MAUREEN MORTON
  • BENJAMIN ONG
  • JING-MEI QIU
چکیده

In this paper, we consider construct high order semi-implicit integrators using integral deferred correction (IDC) to solve stiff initial value problems. The general framework for the construction of these semi-implicit methods uses uniformly distributed nodes and additive RungeKutta (ARK) integrators as base schemes inside an IDC framework, which we refer to as IDC-ARK methods. We establish under mild assumptions that, when an r order ARK method is used to predict and correct the numerical solution, the order of accuracy of the IDC method increases by r for each IDC prediction and correction loop. Numerical experiments support the established theorems, and also indicate that higher order IDC-ARK methods present an efficiency advantage over existing implicit-explicit (IMEX) ARK schemes in some cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implications of the Choice of Predictors for Semi-implicit Picard Integral Deferred Correction Methods

High-order semi-implicit Picard integral deferred correction (SIPIDC) methods have previously been proposed for the time-integration of partial differential equations with two or more disparate time scales. The SIPIDC methods studied to date compute a high-order approximation by first computing a provisional solution with a first-order semi-implicit method and then using a similar semi-implicit...

متن کامل

Implications of the Choice of Predictors for Semi-Implicit Picard Integral Deferred Correction

Previously, high-order semi-implicit Picard integral deferred correction (SIPIDC) methods have been proposed for the time-integration of partial differential equations with two or more disparate time scales. The SIPIDC methods studied to date compute a high-order approximation by first computing a provisional solution with a first-order semi-implicit method and then using a similar semi-implici...

متن کامل

Design and Implementation of Predictors for Additive Semi-Implicit Runge--Kutta Methods

Abstract. Space discretization of some time-dependent partial differential equations gives rise to stiff systems of ordinary differential equations. In this case, implicit methods should be used and therefore, in general, nonlinear systems must be solved. The solutions to these systems are approximated by iterative schemes and, in order to obtain an efficient code, good initializers should be u...

متن کامل

Comments on High Order Integrators Embedded within Integral Deferred Correction Methods

Spectral deferred correction (SDC) methods for solving ordinary differential equations (ODEs) were introduced by Dutt, Greengard and Rokhlin, [3]. In this paper, we study the properties of these integral deferred correction methods, constructed using high order integrators in the prediction and correction loops, and various distributions of quadrature nodes. The smoothness of the error vector a...

متن کامل

Integral deferred correction methods constructed with high order Runge-Kutta integrators

Spectral deferred correction (SDC) methods for solving ordinary differential equations (ODEs) were introduced by Dutt, Greengard and Rokhlin [5]. It was shown in [5] that SDC methods can achieve arbitrary high order accuracy and possess nice stability properties. Their SDC methods are constructed with low order integrators, such as forward Euler or backward Euler, and are able to handle stiff a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011